metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[N,N'-Bis(3-aminopropyl)ethylenediamine]disaccharinatocadmium(II) 0.25-hydrate

Hümeyra Pasaoğlu,^a Gökhan Kastas,^a* Okan Z. Yesilel^b and Onur Sahin^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir, Turkey Correspondence e-mail: gkastas@omu.edu.tr

Received 22 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 14.5

The asymmetric unit of the title compound, [Cd(C₇H₄NO₃S)₂-(C₈H₂₂N₄)]·0.25H₂O, consists of two [Cd(sac)₂(paen)] molecules [sac is saccharinate ($C_7H_4NO_3S$) and paen is N,N'-bis(3propylamine)ethylenediamine $(C_8H_{22}N_4)$], and a partialoccupancy water molecule. Each Cd^{II} ion is octahedrally coordinated. The equatorial plane of the octahedron is formed by N atoms of the paen ligands, and the axial positions are occupied by the N atoms of the sac ligands. In one of the molecules, the sulfonyl group of a sac ligand is disordered over two different orientations, with site-occupancy factors of 0.83 and 0.17. N-H···O hydrogen bonding is observed between the independent molecules. Neighbouring $[Cd(sac)_2(paen)]$ units are linked by $N-H \cdots O$ hydrogen bonds into chains running parallel to the *a* axis.

Related literature

For related structures, see: Yeşilel et al. (2006); Yilmaz et al. (2002, 2006); Paşaoğlu et al. (2007).

Experimental

Crystal data	
$[Cd(C_7H_4NO_3S)_2-$	$\beta = 93.840 \ (5)^{\circ}$
$(C_8H_{22}N_4)] \cdot 0.25H_2O$	V = 5468 (3) Å ³
$M_r = 653.04$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.540 (5) Å	$\mu = 1.00 \text{ mm}^{-1}$
b = 24.005 (5) Å	T = 296 K
c = 15.701 (5) Å	$0.27 \times 0.26 \times 0.24 \text{ mm}$

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.790, T_{\max} = 0.867$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.084$	independent and constrained
S = 0.83	refinement
10742 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
740 parameters	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

78541 measured reflections

 $R_{\rm int} = 0.077$

10742 independent reflections

6287 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Cd1-N6	2.303 (4)	Cd2-N10	2.294 (4)
Cd1-N5	2.306 (3)	Cd2-N12	2.306 (4)
Cd1-N4	2.363 (4)	Cd2-N9	2.346 (4)
Cd1-N3	2.397 (4)	Cd2-N11	2.373 (4)
Cd1-N1	2.443 (3)	Cd2-N7	2.458 (3)
Cd1-N2	2.464 (3)	Cd2-N8	2.470 (3)
N6-Cd1-N4	161.19 (15)	N10-Cd2-N9	160.43 (17)
N5-Cd1-N3	162.43 (14)	N12-Cd2-N11	163.22 (16)
N1-Cd1-N2	165.37 (10)	N7-Cd2-N8	163.28 (10)

metal-organic compounds

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N5-H5A····O9 ⁱ	0.87 (5)	2.26 (5)	3.011 (5)	144 (4)
N9−H9···O3 ⁱⁱ	0.88 (5)	2.34 (6)	3.142 (5)	151 (5)
N3-H3A···O12	0.99 (6)	2.29 (6)	3.198 (5)	152 (5)
$N4-H4A\cdots O2$	0.96 (5)	2.17 (5)	3.095 (5)	161 (4)
$N5-H5B\cdots O5A$	0.98 (5)	2.39 (5)	3.151 (10)	134 (4)
N12−H12A···O12	0.88 (5)	2.20 (5)	2.960 (6)	144 (5)
$N12-H12B\cdots O7$	0.81(5)	2.35 (5)	3.094 (5)	152 (5)
N10−H10B···O6	0.80(5)	2.22 (5)	2.901 (5)	143 (4)
N10-H10A···O8	0.94 (6)	2.22 (6)	3.076 (5)	151 (5)
$N6-H6B\cdotsO1W$	0.98 (4)	2.21 (5)	3.047 (12)	142 (4)
$\begin{array}{c} \text{N10-H10B} \cdots \text{O6} \\ \text{N10-H10A} \cdots \text{O8} \\ \text{N6-H6B} \cdots \text{O1W} \end{array}$	$\begin{array}{c} 0.80 \\ 0.80 \\ (5) \\ 0.94 \\ (6) \\ 0.98 \\ (4) \end{array}$	$\begin{array}{c} 2.22 \ (5) \\ 2.22 \ (6) \\ 2.21 \ (5) \end{array}$	2.901 (5) 3.076 (5) 3.047 (12)	$ \begin{array}{c} 143 (4) \\ 151 (5) \\ 142 (4) \end{array} $

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2495).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Paşaoğlu, H., Kaştaş, G., Yeşilel, O. Z., Şahin, O. & Büyükgüngör, O. (2007). Acta Cryst. E63, m2710–m2711.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Yeşilel, O. Z., Ölmez, H., Paşaoğlu, H. & Kaştaş, G. (2006). Z. Naturforsch. Teil B 61, 153–158.
- Yilmaz, V. T., Guney, S., Andac, O. & Harrison, W. T. A. (2002). Acta Cryst. C58, m427–m430.
- Yilmaz, V. T., Kars, V. & Kazak, C. (2006). J. Coord. Chem. 59, 1937-1944.

Acta Cryst. (2007). E63, m2953-m2954 [doi:10.1107/S1600536807055481]

[N,N'-Bis(3-aminopropyl)ethylenediamine]disaccharinatocadmium(II) 0.25-hydrate

H. Pasaoglu, G. Kastas, O. Z. Yesilel and O. Sahin

Comment

The title compound has two $[Cd(sac)_2(paen)]$ molecules (sac is saccharinate and paen is *N*,*N*-bis(3-propylamine)ethylenediamine) and a partially occupied water molecule in the asymmetric unit. In each complex molecule, the Cd^{II} atom is octahedrally coordinated by N atoms of paen and sac ligands. The equatorial plane of the octahedron are defined by the N atoms of paen ligands, whereas the axial positions are occupied by the N atoms of the sac ligands (Fig. 1). In the present structure the sac ligand is N-bonded to the Cd^{II} ion whereas O-coordination has been observed in a previously reported structure (Paşaoğlu *et al.*, 2007). The sulfonyl group of the sac ligand in one of the independent molecule is disordered over two different orientations. However, the bond lengths and angles of the sac ligands are similiar to those observed in related structures (Yeşilel *et al.*, 2006; Yilmaz *et al.*, 2002, 2006). The Cd—N_{sac} bonds are slightly longer than the Cd—N_{paen} bonds, and the *trans*-(N—Cd—N) angles deviate significantly from linearity (Table 1).

N—H···O hydrogen bonding is observed between the independent molecules (Table 2). Neighbouring $[Cd(sac)_2(paen)]$ units are linked by N—H···O hydrogen bonds (Fig. 2) into chains running parallel to the *a* axis.

Experimental

A solution of N,N-bis(3-propylamine)ethylenediamine (2 mmol, 0.36 g) in water (10 ml) was added drop wise with stirring to a solution of [Cd(saccharinate)₂(H₂O)₄]²H₂O (2.0 mmol, 1.17 g) in hot water (20 ml). The mixture was heated to 323 K in a temperature-controlled bath and stirred for 2 h. The reaction mixture was then cooled to room temperature. The crystals formed were filtered and washed with 10 ml of water and ethanol and dried in air.

Refinement

The sulfonyl group of one of the sacharinate ligands is disordered over two different orientations (S2A,O4A,O5A/S2B,O4B,O5B) with refined occupancies of 0.83 (2) and 0.17 (2). The H atoms of the partially occupied water molecule could not be located. H atoms bonded to N3, N4, N5, N6, N9, N10 and N12 were located in a difference map and refined freely. The remaining H atoms were placed in geometrically idealized positions (N—H = 0.91 Å and C—H = 0.93–0.97 Å) and were refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 20% probability level. Only the major disorder component is shown. H atoms have been omitted for clarity.

Fig. 2. Part of the crystal packing of the title compound, showing a chain structure along the a axis. Benzene rings and some hydrogen bonds have been omitted for clarity [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.]

[N,N'-Bis(3-aminopropyl)ethylenediamine]disaccharinatocadmium(II) 0.25-hydrate

Crystal data	
$[Cd(C_7H_4NO_3S)_2(C_8H_{22}N_4)] \cdot 0.25H_2O)$	$F_{000} = 2664$
$M_r = 653.04$	$D_{\rm x} = 1.587 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 17796 reflections
a = 14.540 (5) Å	$\theta = 1.4 - 27.0^{\circ}$
b = 24.005 (5) Å	$\mu = 1.00 \text{ mm}^{-1}$
c = 15.701 (5) Å	T = 296 K
$\beta = 93.840 \ (5)^{\circ}$	Prism', colourless
$V = 5468 (3) \text{ Å}^3$	$0.27\times0.26\times0.24~mm$
Z = 8	

Data collection

Stoe IPDS II diffractometer	10742 independent reflections
Radiation source: fine-focus sealed tube	6287 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.077$
T = 296 K	$\theta_{\rm max} = 26.0^{\circ}$
ω–scan	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$h = -17 \rightarrow 17$
$T_{\min} = 0.790, \ T_{\max} = 0.867$	$k = -29 \rightarrow 29$
78541 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0461P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{\text{max}} = 0.009$
<i>S</i> = 0.83	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
10742 reflections	$\Delta \rho_{\text{min}} = -0.58 \text{ e } \text{\AA}^{-3}$
740 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.00061 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Cd1	0.719145 (19)	0.424731 (11)	0.245527 (17)	0.05342 (9)	
S1	0.78820 (7)	0.57059 (4)	0.27203 (6)	0.0590 (2)	
S2A	0.7253 (3)	0.2771 (2)	0.2090 (3)	0.0699 (9)	0.83 (2)
S2B	0.747 (2)	0.2777 (11)	0.191 (2)	0.109 (11)	0.17 (2)
01	0.71451 (18)	0.58945 (11)	0.32103 (19)	0.0727 (8)	
O2	0.7740 (2)	0.57911 (11)	0.18148 (17)	0.0761 (8)	
O3	0.93263 (19)	0.45493 (12)	0.35214 (19)	0.0777 (8)	
O4A	0.7579 (5)	0.26783 (18)	0.2995 (6)	0.090 (2)	0.83 (2)
O4B	0.790 (3)	0.2669 (12)	0.258 (3)	0.090 (2)	0.17 (2)
O5A	0.8004 (7)	0.2777 (4)	0.1536 (7)	0.096 (3)	0.83 (2)
O5B	0.783 (3)	0.2837 (19)	0.107 (3)	0.094 (14)	0.17 (2)
O6	0.5144 (2)	0.35423 (12)	0.1666 (2)	0.0920 (10)	
N1	0.6648 (2)	0.33248 (12)	0.1998 (2)	0.0650 (9)	
N2	0.8126 (2)	0.50603 (12)	0.2928 (2)	0.0578 (8)	
N3	0.5770 (3)	0.45627 (16)	0.2978 (2)	0.0724 (10)	

N4	0.6483 (3)	0.47838 (16)	0.1333 (2)	0.0727 (10)
N5	0.8367 (3)	0.40708 (18)	0.1577 (3)	0.0693 (10)
N6	0.7589 (3)	0.39118 (19)	0.3804 (3)	0.0904 (13)
C1	0.8984 (3)	0.49998 (16)	0.3302 (2)	0.0566 (9)
C2	0.9484 (2)	0.55429 (16)	0.3421 (2)	0.0546 (9)
C3	1.0357 (3)	0.56411 (18)	0.3783 (3)	0.0688 (11)
H3	1.0725	0.5350	0.3998	0.083*
C4	1.0670 (3)	0.6180 (2)	0.3818 (3)	0.0806 (13)
H4	1.1261	0.6252	0.4056	0.097*
C5	1.0137 (3)	0.66141 (18)	0.3512 (3)	0.0814 (13)
H5	1.0369	0.6975	0.3543	0.098*
C6	0.9256 (3)	0.65202 (17)	0.3158 (3)	0.0708 (11)
Н6	0.8887	0.6813	0.2951	0.085*
C7	0.8944 (2)	0.59838 (15)	0.3119 (2)	0.0556 (9)
C8	0.5758 (3)	0.31942 (16)	0.1756 (3)	0.0625 (10)
C9	0.5607 (3)	0.25861 (16)	0.1611 (3)	0.0613 (10)
C10	0.4798 (3)	0.23143 (19)	0.1390 (3)	0.0809 (13)
H10	0.4247	0.2509	0.1296	0.097*
C11	0.4828 (4)	0.1736 (2)	0.1311 (3)	0.0877 (14)
H11	0.4285	0.1541	0.1176	0.105*
C12	0.5641 (4)	0.14522 (19)	0.1430 (3)	0.0835 (14)
H12	0.5644	0.1068	0.1360	0.100*
C13	0.6452 (3)	0.17213 (16)	0.1650 (3)	0.0754 (12)
H13	0.7006	0.1529	0.1734	0.091*
C14	0.6410 (3)	0.22930 (15)	0.1743 (3)	0.0620 (10)
C15	0.7214 (4)	0.4245 (2)	0.4533 (3)	0.1023 (17)
H15B	0.7390	0.4057	0.5065	0.123*
H15A	0.7510	0.4608	0.4553	0.123*
C16	0.6201 (4)	0.4331 (2)	0.4481 (3)	0.0979 (16)
H16A	0.5910	0.3974	0.4356	0.117*
H16B	0.6028	0.4444	0.5042	0.117*
C17	0.5804 (4)	0.4741 (2)	0.3852 (3)	0.0924 (15)
H17B	0.5183	0.4829	0.3997	0.111*
H17A	0.6164	0.5081	0.3906	0.111*
C18	0.5401 (3)	0.49984 (17)	0.2381 (3)	0.0792 (13)
H18B	0.4750	0.5049	0.2457	0.095*
H18A	0.5710	0.5348	0.2520	0.095*
C19	0.5523 (3)	0.48605 (19)	0.1482 (3)	0.0834 (13)
H19B	0.5186	0.4522	0.1331	0.100*
H19A	0.5270	0.5158	0.1120	0.100*
C20	0.6663 (4)	0.4581 (2)	0.0470 (3)	0.0942 (16)
H20B	0.6364	0.4824	0.0043	0.113*
H20A	0.6406	0.4210	0.0387	0.113*
C21	0.7707 (4)	0.4564 (2)	0.0354 (3)	0.1011 (17)
H21B	0.7797	0.4600	-0.0250	0.121*
H21A	0.7987	0.4886	0.0639	0.121*
C22	0.8193 (4)	0.4073 (3)	0.0668 (3)	0.1048 (17)
H22A	0.7833	0.3746	0.0499	0.126*
H22B	0.8776	0.4049	0.0404	0.126*

Cd2	0.223114 (19)	0.388307 (11)	0.258670 (17)	0.05582 (9)
S3	0.23685 (7)	0.53591 (4)	0.22569 (6)	0.0557 (2)
S4	0.28813 (7)	0.24494 (4)	0.30894 (7)	0.0625 (3)
07	0.25839 (19)	0.54825 (10)	0.31489 (16)	0.0671 (7)
08	0.31629 (17)	0.52983 (11)	0.17642 (18)	0.0707 (7)
09	0.02169 (19)	0.46385 (12)	0.16454 (19)	0.0775 (8)
O10	0.2174 (2)	0.23164 (12)	0.3642 (2)	0.0854 (9)
011	0.2679 (2)	0.23039 (12)	0.22060 (19)	0.0791 (8)
012	0.4422 (2)	0.36187 (13)	0.3612 (2)	0.0930 (10)
N7	0.3165 (2)	0.30991 (12)	0.3165 (2)	0.0632 (8)
N8	0.1701 (2)	0.48235 (12)	0.21432 (19)	0.0557 (7)
N9	0.0830 (3)	0.3655 (2)	0.3159 (3)	0.0929 (14)
N10	0.3312 (3)	0.40248 (19)	0.1609 (3)	0.0704 (10)
N11	0.1472 (3)	0.32990 (15)	0.1542 (3)	0.0842 (11)
H11A	0.1711	0.2953	0.1647	0.101*
N12	0.2748 (4)	0.42835 (17)	0.3865 (3)	0.0916 (14)
C23	0.0852 (3)	0.49682 (16)	0.1782 (2)	0.0563 (9)
C24	0.0781 (3)	0.55779 (15)	0.1581 (2)	0.0538 (9)
C25	0.0021 (3)	0.58737 (18)	0.1250 (3)	0.0717 (11)
H25	-0.0537	0.5696	0.1109	0.086*
C26	0.0117 (4)	0.6440 (2)	0.1136 (3)	0.0890 (14)
H26	-0.0389	0.6648	0.0925	0.107*
C27	0.0936 (4)	0.67025 (19)	0.1326 (3)	0.0868 (14)
H27	0.0980	0.7083	0.1229	0.104*
C28	0.1701 (3)	0.64179 (17)	0.1659 (3)	0.0719 (11)
H28	0.2260	0.6597	0.1788	0.086*
C29	0.1597 (3)	0.58505 (15)	0.1791 (2)	0.0552 (9)
C30	0.4039 (3)	0.31674 (17)	0.3493 (3)	0.0644 (10)
C31	0.4517 (3)	0.26224 (16)	0.3693 (2)	0.0609 (10)
C32	0.5402 (3)	0.2529 (2)	0.4028 (3)	0.0829 (13)
H32	0.5790	0.2825	0.4183	0.099*
C33	0.5698 (3)	0.1989 (2)	0.4128 (3)	0.0930 (15)
H33	0.6293	0.1920	0.4356	0.112*
C34	0.5131 (3)	0.1551 (2)	0.3898 (3)	0.0886 (14)
H34	0.5356	0.1189	0.3961	0.106*
C35	0.4238 (3)	0.16317 (18)	0.3578 (3)	0.0767 (12)
H35	0.3848	0.1334	0.3434	0.092*
C36	0.3952 (3)	0.21765 (16)	0.3481 (2)	0.0603 (10)
C37	0.2366 (6)	0.4030 (3)	0.4625 (3)	0.133 (2)
H37B	0.2578	0.4244	0.5125	0.159*
H37A	0.2610	0.3656	0.4697	0.159*
C38	0.1331 (6)	0.4001 (3)	0.4586 (4)	0.148 (3)
H38A	0.1094	0.4356	0.4371	0.178*
H38B	0.1147	0.3964	0.5166	0.178*
C39	0.0860 (5)	0.3546 (3)	0.4056 (5)	0.131 (3)
H39A	0.1183	0.3197	0.4171	0.157*
H39B	0.0235	0.3502	0.4227	0.157*
C40	0.0390 (3)	0.3188 (2)	0.2654 (5)	0.110 (2)
H40A	0.0664	0.2838	0.2848	0.132*

H40B	-0.0262	0.3175	0.2747	0.132*	
C41	0.0511 (4)	0.3256 (2)	0.1727 (4)	0.1069 (18)	
H41A	0.0236	0.2940	0.1421	0.128*	
H41B	0.0188	0.3589	0.1523	0.128*	
C42	0.1615 (5)	0.3407 (2)	0.0647 (3)	0.114 (2)	
H42B	0.1285	0.3744	0.0474	0.137*	
H42A	0.1349	0.3103	0.0307	0.137*	
C43	0.2618 (5)	0.3473 (3)	0.0451 (4)	0.124 (2)	
H43A	0.2966	0.3171	0.0726	0.149*	
H43B	0.2657	0.3431	-0.0160	0.149*	
C44	0.3059 (4)	0.3991 (3)	0.0706 (3)	0.1065 (18)	
H44B	0.3608	0.4037	0.0396	0.128*	
H44A	0.2645	0.4296	0.0548	0.128*	
O1W	0.7901 (12)	0.2850 (5)	0.4846 (8)	0.108 (5) 0.25	
H3A	0.531 (4)	0.426 (2)	0.296 (4)	0.14 (2)*	
H4A	0.677 (3)	0.514 (2)	0.140 (3)	0.098 (16)*	
Н9	0.054 (4)	0.398 (2)	0.314 (3)	0.12 (2)*	
H5B	0.859 (3)	0.370 (2)	0.176 (3)	0.098 (16)*	
H12A	0.334 (4)	0.424 (2)	0.379 (4)	0.118*	
H12B	0.261 (4)	0.461 (2)	0.384 (3)	0.118*	
H5A	0.877 (3)	0.431 (2)	0.177 (3)	0.097 (17)*	
H10B	0.371 (3)	0.383 (2)	0.181 (3)	0.088 (18)*	
H10A	0.349 (4)	0.440 (2)	0.173 (3)	0.13 (2)*	
H6A	0.805 (5)	0.374 (3)	0.362 (4)	0.156*	
H6B	0.738 (3)	0.3587 (19)	0.412 (3)	0.086 (14)*	

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.05049 (17)	0.05383 (16)	0.05555 (16)	0.00683 (13)	0.00069 (12)	0.00101 (12)
S1	0.0504 (5)	0.0537 (5)	0.0710 (6)	-0.0022 (4)	-0.0094 (5)	0.0021 (5)
S2A	0.0454 (19)	0.0487 (11)	0.115 (2)	0.0051 (13)	0.0012 (16)	-0.0089 (9)
S2B	0.047 (10)	0.041 (5)	0.24 (3)	0.003 (5)	0.035 (13)	-0.010 (10)
01	0.0475 (16)	0.0698 (17)	0.101 (2)	0.0050 (13)	0.0063 (14)	-0.0072 (15)
O2	0.077 (2)	0.0789 (19)	0.0693 (18)	-0.0143 (15)	-0.0192 (15)	0.0115 (14)
O3	0.0621 (18)	0.0602 (18)	0.109 (2)	0.0129 (15)	-0.0057 (16)	0.0018 (16)
O4A	0.100 (4)	0.069 (2)	0.096 (5)	0.013 (2)	-0.034 (4)	-0.007 (3)
O4B	0.100 (4)	0.069 (2)	0.096 (5)	0.013 (2)	-0.034 (4)	-0.007 (3)
O5A	0.054 (4)	0.073 (4)	0.165 (8)	0.007 (3)	0.029 (5)	-0.014 (5)
O5B	0.07 (2)	0.085 (16)	0.14 (3)	-0.003 (14)	0.05 (2)	0.01 (2)
O6	0.0571 (18)	0.0647 (19)	0.154 (3)	0.0128 (16)	0.0034 (18)	-0.0160 (19)
N1	0.052 (2)	0.0432 (17)	0.100 (3)	0.0019 (15)	0.0026 (17)	-0.0047 (16)
N2	0.0528 (19)	0.0464 (17)	0.072 (2)	0.0008 (14)	-0.0078 (15)	-0.0032 (15)
N3	0.067 (2)	0.074 (2)	0.078 (2)	-0.008 (2)	0.0131 (18)	-0.0050 (19)
N4	0.064 (2)	0.066 (2)	0.086 (3)	0.0021 (19)	-0.0110 (19)	-0.0064 (19)
N5	0.055 (2)	0.069 (2)	0.085 (3)	-0.006 (2)	0.0137 (19)	-0.015 (2)
N6	0.109 (4)	0.086 (3)	0.075 (3)	-0.001 (3)	-0.009 (2)	0.018 (2)
C1	0.050 (2)	0.054 (2)	0.066 (2)	0.0076 (19)	0.0007 (18)	-0.0044 (18)

C2	0.047 (2)	0.058 (2)	0.059 (2)	0.0039 (18)	0.0028 (17)	-0.0057 (17)
C3	0.050 (2)	0.071 (3)	0.084 (3)	0.010 (2)	-0.006 (2)	-0.007 (2)
C4	0.051 (3)	0.085 (3)	0.104 (3)	-0.005 (2)	-0.011 (2)	-0.013 (3)
C5	0.061 (3)	0.064 (3)	0.117 (4)	-0.012 (2)	-0.011 (3)	-0.003 (2)
C6	0.057 (3)	0.058 (3)	0.096 (3)	0.000 (2)	-0.009 (2)	0.003 (2)
C7	0.047 (2)	0.054 (2)	0.065 (2)	-0.0012 (18)	-0.0006 (17)	-0.0007 (18)
C8	0.056 (3)	0.052 (2)	0.081 (3)	0.0045 (19)	0.009 (2)	-0.007 (2)
С9	0.061 (3)	0.053 (2)	0.071 (3)	-0.002 (2)	0.012 (2)	-0.0054 (19)
C10	0.062 (3)	0.079 (3)	0.103 (4)	-0.008 (2)	0.010 (2)	-0.015 (3)
C11	0.085 (4)	0.077 (3)	0.102 (4)	-0.031 (3)	0.014 (3)	-0.019 (3)
C12	0.108 (4)	0.053 (3)	0.089 (3)	-0.007 (3)	0.003 (3)	-0.005 (2)
C13	0.089 (3)	0.048 (2)	0.089 (3)	-0.001 (2)	0.000 (3)	-0.006 (2)
C14	0.066 (3)	0.049 (2)	0.071 (3)	-0.001 (2)	0.007 (2)	-0.0045 (18)
C15	0.109 (4)	0.138 (5)	0.058 (3)	-0.002 (4)	-0.003 (3)	0.008 (3)
C16	0.099 (4)	0.122 (4)	0.075 (3)	-0.018 (3)	0.020 (3)	-0.006 (3)
C17	0.090 (4)	0.094 (4)	0.095 (4)	-0.009 (3)	0.014 (3)	-0.019 (3)
C18	0.044 (2)	0.061 (3)	0.129 (4)	0.013 (2)	-0.015 (2)	-0.016 (3)
C19	0.073 (3)	0.067 (3)	0.107 (4)	-0.007 (2)	-0.016 (3)	0.006 (3)
C20	0.113 (4)	0.107 (4)	0.059 (3)	-0.028 (3)	-0.029 (3)	0.017 (3)
C21	0.114 (5)	0.121 (5)	0.072 (3)	0.005 (4)	0.029 (3)	0.012 (3)
C22	0.098 (4)	0.136 (5)	0.082 (4)	0.003 (4)	0.021 (3)	-0.015 (3)
Cd2	0.05405 (18)	0.05503 (17)	0.05806 (17)	-0.00392 (13)	0.00148 (12)	-0.00233 (13)
S3	0.0501 (6)	0.0484 (5)	0.0678 (6)	-0.0010 (4)	-0.0023 (5)	0.0017 (4)
S4	0.0504 (6)	0.0509 (6)	0.0850 (7)	0.0008 (4)	-0.0039 (5)	0.0068 (5)
O7	0.0793 (19)	0.0541 (15)	0.0653 (16)	-0.0020 (14)	-0.0159 (14)	-0.0025 (13)
O8	0.0451 (15)	0.0739 (18)	0.094 (2)	0.0004 (13)	0.0104 (14)	0.0034 (15)
O9	0.0546 (18)	0.0698 (19)	0.107 (2)	-0.0147 (15)	-0.0063 (15)	0.0085 (16)
O10	0.0582 (18)	0.075 (2)	0.125 (3)	0.0015 (15)	0.0196 (17)	0.0243 (17)
011	0.078 (2)	0.0689 (19)	0.086 (2)	0.0045 (15)	-0.0261 (16)	-0.0091 (15)
012	0.080 (2)	0.0629 (19)	0.133 (3)	-0.0175 (17)	-0.0184 (19)	0.0037 (18)
N7	0.059 (2)	0.0457 (18)	0.083 (2)	0.0020 (15)	-0.0080 (17)	0.0074 (15)
N8	0.0480 (19)	0.0464 (17)	0.0720 (19)	-0.0024 (14)	-0.0013 (15)	0.0007 (14)
N9	0.072 (3)	0.083 (3)	0.128 (4)	0.019 (2)	0.038 (2)	0.024 (3)
N10	0.063 (2)	0.072 (3)	0.077 (3)	0.015 (2)	0.0134 (19)	0.003 (2)
N11	0.076 (3)	0.069 (2)	0.104 (3)	-0.003 (2)	-0.025 (2)	-0.002 (2)
N12	0.139 (4)	0.069 (2)	0.063 (2)	0.016 (3)	-0.018 (3)	-0.005 (2)
C23	0.047 (2)	0.060 (2)	0.062 (2)	-0.0039 (19)	0.0041 (18)	0.0013 (18)
C24	0.052 (2)	0.058 (2)	0.052 (2)	0.0032 (18)	0.0052 (17)	-0.0006 (17)
C25	0.063 (3)	0.079 (3)	0.071 (3)	0.008 (2)	-0.009 (2)	0.006 (2)
C26	0.104 (4)	0.073 (3)	0.085 (3)	0.022 (3)	-0.027 (3)	0.008 (2)
C27	0.110 (4)	0.058 (3)	0.087 (3)	0.009 (3)	-0.027 (3)	0.010 (2)
C28	0.080 (3)	0.059 (3)	0.074 (3)	-0.006(2)	-0.010 (2)	0.008 (2)
C29	0.060 (2)	0.051 (2)	0.054 (2)	0.0010 (18)	-0.0018 (18)	0.0027 (16)
C30	0.059 (3)	0.058 (3)	0.075 (3)	-0.002(2)	-0.003 (2)	0.004 (2)
C31	0.053 (2)	0.064 (3)	0.064 (2)	0.000 (2)	-0.0033 (19)	0.0052 (19)
C32	0.065 (3)	0.079 (3)	0.102 (4)	0.000 (2)	-0.014 (3)	0.005 (3)
C33	0.055 (3)	0.102 (4)	0.119 (4)	0.015 (3)	-0.017 (3)	0.008 (3)
C34	0.070 (3)	0.073 (3)	0.120 (4)	0.022 (3)	-0.013 (3)	0.007 (3)
C35	0.070 (3)	0.060 (3)	0.098 (3)	0.008 (2)	-0.007 (2)	0.003 (2)

C36	0.054 (2)	0.060 (2)	0.066 (2)	0.0043 (19)	-0.0009 (19)	0.0033 (19)
C37	0.195 (8)	0.146 (6)	0.056 (3)	0.049 (5)	0.001 (4)	0.004 (3)
C38	0.205 (9)	0.163 (7)	0.082 (4)	0.072 (7)	0.050 (5)	0.007 (4)
C39	0.132 (5)	0.134 (6)	0.137 (6)	0.051 (5)	0.080 (5)	0.048 (5)
C40	0.057 (3)	0.066 (3)	0.208 (7)	-0.011 (2)	0.004 (4)	0.034 (4)
C41	0.072 (4)	0.078 (3)	0.167 (6)	0.000 (3)	-0.026 (4)	-0.004 (4)
C42	0.137 (5)	0.121 (5)	0.077 (4)	0.024 (4)	-0.050 (4)	-0.026 (3)
C43	0.155 (6)	0.138 (6)	0.079 (4)	0.023 (5)	0.008 (4)	-0.017 (4)
C44	0.121 (5)	0.123 (5)	0.078 (4)	0.025 (4)	0.025 (3)	0.010 (3)
O1W	0.196 (16)	0.056 (7)	0.072 (8)	0.005 (8)	-0.002 (9)	0.003 (6)

Geometric parameters (Å, °)

Cd1—N6	2.303 (4)	C22—H22A	0.97
Cd1—N5	2.306 (3)	C22—H22B	0.97
Cd1—N4	2.363 (4)	Cd2—N10	2.294 (4)
Cd1—N3	2.397 (4)	Cd2—N12	2.306 (4)
Cd1—N1	2.443 (3)	Cd2—N9	2.346 (4)
Cd1—N2	2.464 (3)	Cd2—N11	2.373 (4)
S1—O1	1.434 (3)	Cd2—N7	2.458 (3)
S1—O2	1.438 (3)	Cd2—N8	2.470 (3)
S1—N2	1.618 (3)	S3—O8	1.440 (3)
S1—C7	1.759 (4)	S3—O7	1.445 (3)
S2A—O5A	1.440 (10)	S3—N8	1.613 (3)
S2A—O4A	1.483 (9)	S3—C29	1.754 (4)
S2A—N1	1.595 (6)	S4—O10	1.426 (3)
S2A-C14	1.740 (6)	S4—O11	1.441 (3)
S2B—O4B	1.21 (4)	S4—N7	1.616 (3)
S2B—O5B	1.47 (5)	S4—C36	1.761 (4)
S2B—N1	1.79 (3)	O9—C23	1.224 (4)
S2B-C14	1.93 (3)	O12—C30	1.227 (5)
O3—C1	1.230 (4)	N7—C30	1.349 (5)
O6—C8	1.224 (4)	N8—C23	1.369 (4)
N1	1.361 (5)	N9—C39	1.430 (7)
N2C1	1.351 (4)	N9—C40	1.493 (7)
N3—C17	1.435 (6)	N9—H9	0.88 (5)
N3-C18	1.481 (5)	N10—C44	1.443 (6)
N3—H3A	0.99 (6)	N10—H10B	0.80 (5)
N4	1.443 (5)	N10—H10A	0.94 (6)
N4-C20	1.480 (6)	N11—C41	1.451 (6)
N4—H4A	0.96 (5)	N11—C42	1.457 (6)
N5—C22	1.432 (6)	N11—H11A	0.91
N5—H5B	0.98 (5)	N12—C37	1.479 (7)
N5—H5A	0.87 (5)	N12—H12A	0.88 (5)
N6-C15	1.527 (6)	N12—H12B	0.81 (5)
N6—H6A	0.85 (6)	C23—C24	1.499 (5)
N6—H6B	0.98 (4)	C24—C29	1.376 (5)
C1—C2	1.498 (5)	C24—C25	1.384 (5)
C2—C3	1.375 (5)	C25—C26	1.380 (6)

C2—C7	1.383 (5)	С25—Н25	0.93
C3—C4	1.371 (6)	C26—C27	1.363 (6)
С3—Н3	0.93	C26—H26	0.93
C4—C5	1.366 (6)	C27—C28	1.378 (6)
C4—H4	0.93	С27—Н27	0.93
C5—C6	1.380 (5)	C28—C29	1.387 (5)
С5—Н5	0.93	C28—H28	0.93
C6—C7	1.365 (5)	C30—C31	1.505 (5)
С6—Н6	0.93	C31—C32	1.375 (5)
C8—C9	1.491 (5)	C31—C36	1.377 (5)
C9—C14	1.367 (5)	C32—C33	1.371 (6)
C9—C10	1.370 (6)	С32—Н32	0.93
C10—C11	1.394 (6)	C33—C34	1.370 (6)
C10—H10	0.93	С33—Н33	0.93
C11—C12	1.368 (6)	C34—C35	1.375 (6)
C11—H11	0.93	С34—Н34	0.93
C12—C13	1.368 (6)	C35—C36	1.378 (5)
C12—H12	0.93	С35—Н35	0.93
C13—C14	1.382 (5)	C37—C38	1.503 (9)
С13—Н13	0.93	С37—Н37В	0.97
C15—C16	1.484 (7)	С37—Н37А	0.97
C15—H15B	0.97	C38—C39	1.511 (10)
C15—H15A	0.97	C38—H38A	0.97
C16—C17	1.483 (7)	С38—Н38В	0.97
C16—H16A	0.97	С39—Н39А	0.97
C16—H16B	0.97	С39—Н39В	0.97
С17—Н17В	0.97	C40—C41	1.486 (8)
С17—Н17А	0.97	C40—H40A	0.97
C18—C19	1.472 (6)	C40—H40B	0.97
C18—H18B	0.97	C41—H41A	0.97
C18—H18A	0.97	C41—H41B	0.97
C19—H19B	0.97	C42—C43	1.519 (8)
C19—H19A	0.97	C42—H42B	0.97
C20—C21	1.540 (7)	C42—H42A	0.97
С20—Н20В	0.97	C43—C44	1.443 (8)
C20—H20A	0.97	C43—H43A	0.97
C21—C22	1.443 (7)	C43—H43B	0.97
C21—H21B	0.97	C44—H44B	0.97
C21—H21A	0.97	C44—H44A	0.97
N6—Cd1—N5	109.60 (16)	N5—C22—H22A	108.9
N6—Cd1—N4	161.19 (15)	C21—C22—H22A	108.9
N5—Cd1—N4	87.56 (14)	N5—C22—H22B	108.9
N6—Cd1—N3	87.97 (15)	C21—C22—H22B	108.9
N5—Cd1—N3	162.43 (14)	H22A—C22—H22B	107.8
N4—Cd1—N3	74.97 (13)	N10-Cd2-N12	108.84 (18)
N6—Cd1—N1	90.54 (14)	N10—Cd2—N9	160.43 (17)
N5—Cd1—N1	84.02 (13)	N12—Cd2—N9	90.24 (19)
N4—Cd1—N1	99.13 (12)	N10—Cd2—N11	86.14 (15)
N3—Cd1—N1	96.76 (12)	N12—Cd2—N11	163.22 (16)

N6—Cd1—N2	84.27 (14)	N9—Cd2—N11	75.62 (16)
N5—Cd1—N2	84.86 (13)	N10—Cd2—N7	88.55 (14)
N4—Cd1—N2	89.84 (12)	N12—Cd2—N7	81.83 (13)
N3—Cd1—N2	96.72 (12)	N9—Cd2—N7	98.76 (14)
N1—Cd1—N2	165.37 (10)	N11—Cd2—N7	91.31 (12)
01—S1—O2	115.02 (18)	N10—Cd2—N8	83.72 (13)
O1—S1—N2	110.82 (17)	N12—Cd2—N8	86.66 (12)
O2—S1—N2	110.55 (17)	N9—Cd2—N8	93.35 (13)
O1—S1—C7	111.05 (17)	N11—Cd2—N8	102.90 (11)
O2—S1—C7	111.27 (17)	N7—Cd2—N8	163.28 (10)
N2—S1—C7	96.67 (17)	O8—S3—O7	114.31 (17)
O5A—S2A—O4A	111.9 (5)	O8—S3—N8	110.96 (16)
O5A—S2A—N1	112.0 (5)	O7—S3—N8	111.12 (16)
O4A—S2A—N1	110.5 (3)	O8—S3—C29	110.96 (17)
O5A—S2A—C14	111.3 (5)	O7—S3—C29	110.95 (16)
O4A—S2A—C14	111.9 (4)	N8—S3—C29	97.29 (17)
N1—S2A—C14	98.5 (3)	O10—S4—O11	115.0 (2)
O4B—S2B—O5B	127 (3)	O10—S4—N7	111.23 (18)
O4B—S2B—N1	114 (3)	O11—S4—N7	109.84 (17)
O5B—S2B—N1	106 (3)	O10—S4—C36	111.16 (19)
O4B—S2B—C14	111 (3)	O11—S4—C36	111.40 (18)
O5B—S2B—C14	105 (3)	N7—S4—C36	96.80 (18)
N1—S2B—C14	85.5 (13)	C30—N7—S4	112.0 (3)
C8—N1—S2A	110.0 (3)	C30—N7—Cd2	122.1 (2)
C8—N1—S2B	116.0 (9)	S4—N7—Cd2	125.46 (17)
C8—N1—Cd1	125.0 (2)	C23—N8—S3	111.3 (2)
S2A—N1—Cd1	124.3 (2)	C23—N8—Cd2	127.2 (2)
S2B—N1—Cd1	118.9 (9)	S3—N8—Cd2	121.55 (16)
C1—N2—S1	112.0 (3)	C39—N9—C40	111.6 (5)
C1—N2—Cd1	121.4 (2)	C39—N9—Cd2	116.8 (4)
S1—N2—Cd1	126.08 (16)	C40—N9—Cd2	108.8 (3)
C17—N3—C18	112.5 (4)	С39—N9—H9	100 (4)
C17—N3—Cd1	116.5 (3)	С40—N9—H9	117 (4)
C18—N3—Cd1	106.9 (3)	Cd2—N9—H9	102 (4)
C17—N3—H3A	103 (3)	C44—N10—Cd2	120.5 (3)
C18—N3—H3A	107 (3)	C44—N10—H10B	119 (3)
Cd1—N3—H3A	111 (3)	Cd2—N10—H10B	99 (3)
C19—N4—C20	115.1 (4)	C44—N10—H10A	107 (3)
C19—N4—Cd1	109.1 (3)	Cd2—N10—H10A	101 (3)
C20—N4—Cd1	114.1 (3)	H10B—N10—H10A	108 (5)
C19—N4—H4A	107 (3)	C41—N11—C42	114.0 (4)
C20—N4—H4A	107 (3)	C41—N11—Cd2	108.3 (3)
Cd1—N4—H4A	104 (3)	C42—N11—Cd2	118.1 (3)
C22—N5—Cd1	120.4 (3)	C41—N11—H11A	105.1
C22—N5—H5B	109 (3)	C42—N11—H11A	105.0
Cd1—N5—H5B	104 (3)	Cd2—N11—H11A	105.0
C22—N5—H5A	115 (3)	C37—N12—Cd2	114.4 (4)
Cd1—N5—H5A	100 (3)	C37—N12—H12A	119 (4)
H5B—N5—H5A	108 (4)	Cd2—N12—H12A	96 (4)

C15—N6—Cd1	115.2 (3)	C37—N12—H12B	110 (4)
C15—N6—H6A	146 (5)	Cd2—N12—H12B	107 (4)
Cd1—N6—H6A	91 (5)	H12A—N12—H12B	110 (6)
C15—N6—H6B	85 (3)	O9—C23—N8	123.9 (4)
Cd1—N6—H6B	132 (3)	O9—C23—C24	123.6 (4)
H6A—N6—H6B	94 (5)	N8—C23—C24	112.5 (3)
O3—C1—N2	124.1 (4)	C29—C24—C25	120.0 (4)
O3—C1—C2	123.1 (4)	C29—C24—C23	111.6 (3)
N2-C1-C2	112.8 (3)	C25—C24—C23	128.5 (4)
C3—C2—C7	119.8 (4)	C26—C25—C24	118.0 (4)
C3—C2—C1	128.9 (4)	С26—С25—Н25	121.0
C7—C2—C1	111.3 (3)	С24—С25—Н25	121.0
C4—C3—C2	118.2 (4)	C27—C26—C25	121.4 (4)
С4—С3—Н3	120.9	С27—С26—Н26	119.3
С2—С3—Н3	120.9	С25—С26—Н26	119.3
C5—C4—C3	121.8 (4)	C26—C27—C28	121.7 (4)
C5—C4—H4	119.1	С26—С27—Н27	119.1
C3—C4—H4	119.1	С28—С27—Н27	119.1
C4—C5—C6	120.4 (4)	C27—C28—C29	116.7 (4)
С4—С5—Н5	119.8	C27—C28—H28	121.6
С6—С5—Н5	119.8	C29—C28—H28	121.6
C7—C6—C5	117.9 (4)	C24—C29—C28	122.1 (4)
С7—С6—Н6	121.0	C24—C29—S3	107.3 (3)
С5—С6—Н6	121.0	C28—C29—S3	130.5 (3)
C6—C7—C2	121.8 (4)	O12—C30—N7	124.9 (4)
C6—C7—S1	130.9 (3)	O12—C30—C31	122.5 (4)
C2—C7—S1	107.3 (3)	N7—C30—C31	112.6 (3)
O6—C8—N1	123.2 (4)	C32—C31—C36	119.6 (4)
O6—C8—C9	123.5 (4)	C32—C31—C30	129.0 (4)
N1—C8—C9	113.3 (3)	C36—C31—C30	111.4 (3)
C14—C9—C10	120.3 (4)	C33—C32—C31	118.4 (4)
C14—C9—C8	111.4 (4)	С33—С32—Н32	120.8
C10—C9—C8	128.3 (4)	C31—C32—H32	120.8
C9—C10—C11	117.7 (4)	C34—C33—C32	121.2 (4)
C9—C10—H10	121.1	С34—С33—Н33	119.4
C11—C10—H10	121.1	С32—С33—Н33	119.4
C12—C11—C10	121.1 (4)	C33—C34—C35	121.6 (4)
C12—C11—H11	119.5	С33—С34—Н34	119.2
C10—C11—H11	119.5	С35—С34—Н34	119.2
C11—C12—C13	121.5 (4)	C34—C35—C36	116.5 (4)
C11—C12—H12	119.3	С34—С35—Н35	121.8
C13—C12—H12	119.3	С36—С35—Н35	121.8
C12—C13—C14	116.9 (4)	C31—C36—C35	122.7 (4)
C12—C13—H13	121.6	C31—C36—S4	107.1 (3)
C14—C13—H13	121.6	C35—C36—S4	130.2 (3)
C9—C14—C13	122.6 (4)	N12—C37—C38	114.5 (5)
C9—C14—S2A	106.5 (3)	N12—C37—H37B	108.6
C13—C14—S2A	130.8 (4)	С38—С37—Н37В	108.6
C9—C14—S2B	112.1 (9)	N12—C37—H37A	108.6

C13—C14—S2B	124.8 (10)	С38—С37—Н37А	108.6
C16—C15—N6	115.8 (4)	Н37В—С37—Н37А	107.6
C16—C15—H15B	108.3	C37—C38—C39	118.1 (6)
N6-C15-H15B	108.3	С37—С38—Н38А	107.8
C16—C15—H15A	108.3	С39—С38—Н38А	107.8
N6-C15-H15A	108.3	С37—С38—Н38В	107.8
H15B—C15—H15A	107.4	С39—С38—Н38В	107.8
C17—C16—C15	118.0 (4)	H38A—C38—H38B	107.1
C17—C16—H16A	107.8	N9—C39—C38	113.0 (5)
C15—C16—H16A	107.8	N9—C39—H39A	109.0
C17—C16—H16B	107.8	С38—С39—Н39А	109.0
C15—C16—H16B	107.8	N9—C39—H39B	109.0
H16A—C16—H16B	107.2	С38—С39—Н39В	109.0
N3—C17—C16	115.3 (4)	H39A—C39—H39B	107.8
N3—C17—H17B	108.5	C41—C40—N9	111.3 (4)
С16—С17—Н17В	108.5	C41—C40—H40A	109.4
N3—C17—H17A	108.5	N9—C40—H40A	109.4
C16—C17—H17A	108.5	C41—C40—H40B	109.4
H17B—C17—H17A	107.5	N9—C40—H40B	109.4
C19—C18—N3	112.7 (3)	H40A—C40—H40B	108.0
C19—C18—H18B	109.0	N11—C41—C40	112.5 (4)
N3—C18—H18B	109.0	N11—C41—H41A	109.1
C19-C18-H18A	109.0	C40—C41—H41A	109.1
N3—C18—H18A	109.0	N11—C41—H41B	109.1
H18B—C18—H18A	107.8	C40—C41—H41B	109.1
N4—C19—C18	111.4 (4)	H41A—C41—H41B	107.8
N4—C19—H19B	109.3	N11—C42—C43	114.5 (4)
C18—C19—H19B	109.3	N11—C42—H42B	108.6
N4	109.3	C43—C42—H42B	108.6
C18—C19—H19A	109.3	N11—C42—H42A	108.6
H19B—C19—H19A	108.0	C43—C42—H42A	108.6
N4—C20—C21	110.7 (4)	H42B—C42—H42A	107.6
N4—C20—H20B	109.5	C44—C43—C42	116.7 (5)
C21—C20—H20B	109.5	C44—C43—H43A	108.1
N4—C20—H20A	109.5	C42—C43—H43A	108.1
C21—C20—H20A	109.5	C44—C43—H43B	108.1
H20B-C20-H20A	108.1	С42—С43—Н43В	108.1
C22—C21—C20	116.4 (5)	H43A—C43—H43B	107.3
C22—C21—H21B	108.2	N10-C44-C43	113.6 (5)
C20—C21—H21B	108.2	N10-C44-H44B	108.8
C22—C21—H21A	108.2	C43—C44—H44B	108.8
C20—C21—H21A	108.2	N10-C44-H44A	108.8
H21B-C21-H21A	107.3	C43—C44—H44A	108.8
N5-C22-C21	113.2 (5)	H44B—C44—H44A	107.7
O5A—S2A—N1—C8	121.1 (6)	O5B—S2B—C14—S2A	-159 (7)
O4A—S2A—N1—C8	-113.4 (4)	N1—S2B—C14—S2A	-53 (4)
C14—S2A—N1—C8	4.0 (4)	Cd1—N6—C15—C16	54.7 (6)
O5A—S2A—N1—S2B	2(5)	N6—C15—C16—C17	-74.5 (6)
O4A—S2A—N1—S2B	127 (5)	C18—N3—C17—C16	-177.8 (4)

C14—S2A—N1—S2B	-115 (5)	Cd1—N3—C17—C16	-53.8 (5)
O5A—S2A—N1—Cd1	-68.2 (6)	C15-C16-C17-N3	74.1 (6)
O4A—S2A—N1—Cd1	57.3 (4)	C17—N3—C18—C19	169.4 (4)
C14—S2A—N1—Cd1	174.6 (2)	Cd1—N3—C18—C19	40.2 (4)
O4B—S2B—N1—C8	-122 (2)	C20-N4-C19-C18	173.3 (4)
O5B—S2B—N1—C8	93 (3)	Cd1—N4—C19—C18	43.6 (4)
C14—S2B—N1—C8	-12.0 (17)	N3-C18-C19-N4	-59.0 (5)
O4B—S2B—N1—S2A	-57 (5)	C19—N4—C20—C21	175.0 (4)
O5B—S2B—N1—S2A	159 (7)	Cd1—N4—C20—C21	-57.9 (5)
C14—S2B—N1—S2A	54 (4)	N4—C20—C21—C22	84.0 (6)
O4B—S2B—N1—Cd1	61 (3)	Cd1—N5—C22—C21	49.9 (6)
O5B—S2B—N1—Cd1	-84 (3)	C20-C21-C22-N5	-77.2 (6)
C14—S2B—N1—Cd1	171.2 (4)	O10—S4—N7—C30	114.6 (3)
N6—Cd1—N1—C8	115.0 (3)	O11—S4—N7—C30	-117.0 (3)
N5—Cd1—N1—C8	-135.3 (3)	C36—S4—N7—C30	-1.3 (3)
N4—Cd1—N1—C8	-48.8 (3)	O10—S4—N7—Cd2	-73.4 (2)
N3—Cd1—N1—C8	27.0 (3)	O11—S4—N7—Cd2	55.0 (3)
N2—Cd1—N1—C8	-176.0 (4)	C36—S4—N7—Cd2	170.7 (2)
N6—Cd1—N1—S2A	-54.3 (3)	N10-Cd2-N7-C30	60.3 (3)
N5—Cd1—N1—S2A	55.4 (3)	N12—Cd2—N7—C30	-49.0 (3)
N4—Cd1—N1—S2A	141.9 (3)	N9—Cd2—N7—C30	-137.9 (3)
N3—Cd1—N1—S2A	-142.3 (3)	N11—Cd2—N7—C30	146.4 (3)
N2—Cd1—N1—S2A	14.7 (6)	N8—Cd2—N7—C30	-2.0 (6)
N6—Cd1—N1—S2B	-68.5 (14)	N10-Cd2-N7-S4	-111.0 (2)
N5—Cd1—N1—S2B	41.2 (14)	N12—Cd2—N7—S4	139.8 (3)
N4—Cd1—N1—S2B	127.7 (14)	N9—Cd2—N7—S4	50.8 (2)
N3—Cd1—N1—S2B	-156.5 (14)	N11—Cd2—N7—S4	-24.8 (2)
N2—Cd1—N1—S2B	0.5 (15)	N8—Cd2—N7—S4	-173.3 (3)
O1—S1—N2—C1	-115.3 (3)	O8—S3—N8—C23	-117.9 (3)
O2—S1—N2—C1	116.0 (3)	O7—S3—N8—C23	113.7 (3)
C7—S1—N2—C1	0.3 (3)	C29—S3—N8—C23	-2.1 (3)
O1—S1—N2—Cd1	73.5 (2)	O8—S3—N8—Cd2	61.9 (2)
O2—S1—N2—Cd1	-55.2 (2)	O7—S3—N8—Cd2	-66.5 (2)
C7—S1—N2—Cd1	-170.9 (2)	C29—S3—N8—Cd2	177.71 (18)
N6—Cd1—N2—C1	49.5 (3)	N10-Cd2-N8-C23	119.6 (3)
N5—Cd1—N2—C1	-60.9 (3)	N12—Cd2—N8—C23	-131.1 (3)
N4—Cd1—N2—C1	-148.4 (3)	N9—Cd2—N8—C23	-41.0 (3)
N3—Cd1—N2—C1	136.7 (3)	N11—Cd2—N8—C23	35.0 (3)
N1—Cd1—N2—C1	-20.3 (6)	N7—Cd2—N8—C23	-177.5 (3)
N6-Cd1-N2-S1	-140.2 (2)	N10-Cd2-N8-S3	-60.2 (2)
N5—Cd1—N2—S1	109.5 (2)	N12—Cd2—N8—S3	49.2 (2)
N4—Cd1—N2—S1	22.0 (2)	N9—Cd2—N8—S3	139.2 (2)
N3—Cd1—N2—S1	-52.9 (2)	N11—Cd2—N8—S3	-144.80 (19)
N1—Cd1—N2—S1	150.1 (4)	N7—Cd2—N8—S3	2.7 (5)
N6—Cd1—N3—C17	33.0 (3)	N10-Cd2-N9-C39	162.1 (5)
N5—Cd1—N3—C17	-145.2 (4)	N12-Cd2-N9-C39	-30.6 (4)
N4—Cd1—N3—C17	-139.0 (4)	N11—Cd2—N9—C39	140.3 (4)
N1—Cd1—N3—C17	123.3 (3)	N7—Cd2—N9—C39	51.2 (4)
N2-Cd1-N3-C17	-51.0 (3)	N8—Cd2—N9—C39	-117.2 (4)

N6-Cd1-N3-C18	159.8 (3)	N10-Cd2-N9-C40	34.7 (7)
N5-Cd1-N3-C18	-18.4 (6)	N12—Cd2—N9—C40	-158.0 (3)
N4—Cd1—N3—C18	-12.2 (3)	N11—Cd2—N9—C40	12.9 (3)
N1—Cd1—N3—C18	-109.9 (3)	N7—Cd2—N9—C40	-76.3 (3)
N2—Cd1—N3—C18	75.8 (3)	N8—Cd2—N9—C40	115.3 (3)
N6-Cd1-N4-C19	-41.6 (6)	N12—Cd2—N10—C44	-159.1 (4)
N5-Cd1-N4-C19	162.1 (3)	N9-Cd2-N10-C44	7.5 (7)
N3—Cd1—N4—C19	-16.1 (3)	N11—Cd2—N10—C44	28.6 (4)
N1-Cd1-N4-C19	78.5 (3)	N7—Cd2—N10—C44	120.0 (4)
N2-Cd1-N4-C19	-113.1 (3)	N8—Cd2—N10—C44	-74.8 (4)
N6-Cd1-N4-C20	-171.8 (4)	N10—Cd2—N11—C41	-157.9 (3)
N5-Cd1-N4-C20	31.8 (3)	N12—Cd2—N11—C41	48.2 (7)
N3—Cd1—N4—C20	-146.3 (3)	N9—Cd2—N11—C41	14.9 (3)
N1—Cd1—N4—C20	-51.7 (3)	N7—Cd2—N11—C41	113.6 (3)
N2-Cd1-N4-C20	116.7 (3)	N8—Cd2—N11—C41	-75.3 (3)
N6-Cd1-N5-C22	160.2 (4)	N10—Cd2—N11—C42	-26.4 (4)
N4—Cd1—N5—C22	-27.7 (4)	N12—Cd2—N11—C42	179.7 (5)
N3—Cd1—N5—C22	-21.7 (7)	N9—Cd2—N11—C42	146.4 (4)
N1—Cd1—N5—C22	71.8 (4)	N7—Cd2—N11—C42	-114.9 (4)
N2—Cd1—N5—C22	-117.7 (4)	N8—Cd2—N11—C42	56.2 (4)
N5-Cd1-N6-C15	147.4 (4)	N10-Cd2-N12-C37	-154.4 (4)
N4—Cd1—N6—C15	-7.4 (7)	N9—Cd2—N12—C37	30.0 (4)
N3—Cd1—N6—C15	-32.0 (4)	N11—Cd2—N12—C37	-2.2 (8)
N1—Cd1—N6—C15	-128.8 (4)	N7—Cd2—N12—C37	-68.8 (4)
N2—Cd1—N6—C15	64.9 (4)	N8—Cd2—N12—C37	123.4 (4)
S1—N2—C1—O3	179.9 (3)	S3—N8—C23—O9	-178.5 (3)
Cd1—N2—C1—O3	-8.5 (5)	Cd2—N8—C23—O9	1.7 (5)
S1—N2—C1—C2	-0.2 (4)	S3—N8—C23—C24	0.9 (4)
Cd1—N2—C1—C2	171.4 (2)	Cd2—N8—C23—C24	-179.0 (2)
O3—C1—C2—C3	-0.8 (6)	O9—C23—C24—C29	-179.4 (4)
N2—C1—C2—C3	179.3 (4)	N8—C23—C24—C29	1.3 (4)
O3—C1—C2—C7	180.0 (4)	O9—C23—C24—C25	2.4 (6)
N2—C1—C2—C7	0.0 (4)	N8—C23—C24—C25	-176.9 (4)
C7—C2—C3—C4	-1.1 (6)	C29—C24—C25—C26	0.4 (6)
C1—C2—C3—C4	179.7 (4)	C23—C24—C25—C26	178.6 (4)
C2—C3—C4—C5	0.6 (7)	C24—C25—C26—C27	1.3 (7)
C3—C4—C5—C6	0.2 (7)	C25—C26—C27—C28	-1.5 (8)
C4—C5—C6—C7	-0.4 (7)	C26—C27—C28—C29	0.0 (7)
C5—C6—C7—C2	-0.2 (6)	C25—C24—C29—C28	-2.0 (6)
C5—C6—C7—S1	180.0 (3)	C23—C24—C29—C28	179.6 (3)
C3—C2—C7—C6	0.9 (6)	C25—C24—C29—S3	175.8 (3)
C1—C2—C7—C6	-179.8 (4)	C23—C24—C29—S3	-2.6 (4)
C3—C2—C7—S1	-179.2 (3)	C27—C28—C29—C24	1.7 (6)
C1—C2—C7—S1	0.1 (4)	C27—C28—C29—S3	-175.5 (3)
O1—S1—C7—C6	-65.0 (4)	O8—S3—C29—C24	118.6 (3)
O2—S1—C7—C6	64.5 (4)	O7—S3—C29—C24	-113.2 (3)
N2—S1—C7—C6	179.7 (4)	N8—S3—C29—C24	2.8 (3)
O1—S1—C7—C2	115.2 (3)	O8—S3—C29—C28	-63.9 (4)
O2—S1—C7—C2	-115.4 (3)	O7—S3—C29—C28	64.3 (4)

N2—S1—C7—C2	-0.2 (3)	N8—S3—C29—C28	-179.7 (4)
S2A—N1—C8—O6	177.7 (4)	S4—N7—C30—O12	179.7 (4)
S2B—N1—C8—O6	-169.5 (14)	Cd2—N7—C30—O12	7.3 (6)
Cd1—N1—C8—O6	7.1 (6)	S4—N7—C30—C31	0.4 (4)
S2A—N1—C8—C9	-2.4 (5)	Cd2—N7—C30—C31	-171.9 (2)
S2B—N1—C8—C9	10.4 (15)	O12—C30—C31—C32	0.5 (7)
Cd1—N1—C8—C9	-173.0 (2)	N7—C30—C31—C32	179.8 (4)
O6—C8—C9—C14	179.0 (4)	O12—C30—C31—C36	-178.3 (4)
N1—C8—C9—C14	-0.9 (5)	N7-C30-C31-C36	1.0 (5)
O6—C8—C9—C10	-2.3 (7)	C36—C31—C32—C33	0.9 (7)
N1—C8—C9—C10	177.8 (4)	C30—C31—C32—C33	-177.7 (4)
C14—C9—C10—C11	0.3 (6)	C31—C32—C33—C34	0.3 (8)
C8—C9—C10—C11	-178.3 (4)	C32—C33—C34—C35	-1.6 (8)
C9—C10—C11—C12	-1.6 (7)	C33—C34—C35—C36	1.5 (7)
C10-C11-C12-C13	1.6 (7)	C32—C31—C36—C35	-1.0 (6)
C11—C12—C13—C14	-0.3 (7)	C30—C31—C36—C35	177.9 (4)
C10-C9-C14-C13	1.1 (6)	C32—C31—C36—S4	179.3 (3)
C8—C9—C14—C13	179.9 (4)	C30—C31—C36—S4	-1.8 (4)
C10-C9-C14-S2A	-175.4 (4)	C34—C35—C36—C31	-0.3 (7)
C8—C9—C14—S2A	3.4 (5)	C34—C35—C36—S4	179.4 (4)
C10—C9—C14—S2B	173.1 (13)	O10—S4—C36—C31	-114.1 (3)
C8—C9—C14—S2B	-8.0 (13)	O11—S4—C36—C31	116.3 (3)
C12—C13—C14—C9	-1.1 (6)	N7—S4—C36—C31	1.8 (3)
C12-C13-C14-S2A	174.5 (4)	O10—S4—C36—C35	66.2 (4)
C12—C13—C14—S2B	-172.1 (14)	O11—S4—C36—C35	-63.4 (4)
O5A—S2A—C14—C9	-122.1 (6)	N7—S4—C36—C35	-177.9 (4)
O4A—S2A—C14—C9	111.9 (4)	Cd2—N12—C37—C38	-53.5 (7)
N1—S2A—C14—C9	-4.4 (4)	N12-C37-C38-C39	78.4 (8)
O5A—S2A—C14—C13	61.8 (7)	C40—N9—C39—C38	177.9 (5)
O4A—S2A—C14—C13	-64.2 (6)	Cd2—N9—C39—C38	51.9 (6)
N1—S2A—C14—C13	179.5 (4)	C37—C38—C39—N9	-76.5 (7)
O5A—S2A—C14—S2B	-3(5)	C39—N9—C40—C41	-169.8 (4)
O4A—S2A—C14—S2B	-129 (5)	Cd2—N9—C40—C41	-39.5 (5)
N1—S2A—C14—S2B	115 (5)	C42—N11—C41—C40	-175.7 (4)
O4B—S2B—C14—C9	125 (2)	Cd2—N11—C41—C40	-42.0 (5)
O5B—S2B—C14—C9	-94 (3)	N9-C40-C41-N11	57.0 (6)
N1—S2B—C14—C9	11.2 (16)	C41—N11—C42—C43	177.9 (5)
O4B—S2B—C14—C13	-63 (3)	Cd2—N11—C42—C43	49.1 (6)
O5B-S2B-C14-C13	78 (3)	N11-C42-C43-C44	-74.9 (7)
N1—S2B—C14—C13	-176.9 (5)	Cd2—N10—C44—C43	-54.6 (6)
O4B—S2B—C14—S2A	60 (6)	C42—C43—C44—N10	76.7 (7)
Hydrogen-bond geometry (Å, °)			
D—H···A	D—H	H···A D···A	D—H∙

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N5—H5A····O9 ⁱ	0.87 (5)	2.26 (5)	3.011 (5)	144 (4)
N9—H9····O3 ⁱⁱ	0.88 (5)	2.34 (6)	3.142 (5)	151 (5)
N3—H3A…O12	0.99 (6)	2.29 (6)	3.198 (5)	152 (5)
N4—H4A···O2	0.96 (5)	2.17 (5)	3.095 (5)	161 (4)

N5—H5B···O5A	0.98 (5)	2.39 (5)	3.151 (10)	134 (4)
N12—H12A…O12	0.88 (5)	2.20 (5)	2.960 (6)	144 (5)
N12—H12B…O7	0.81 (5)	2.35 (5)	3.094 (5)	152 (5)
N10—H10B…O6	0.80 (5)	2.22 (5)	2.901 (5)	143 (4)
N10—H10A…O8	0.94 (6)	2.22 (6)	3.076 (5)	151 (5)
N6—H6B···O1W	0.98 (4)	2.21 (5)	3.047 (12)	142 (4)
Symmetry codes: (i) <i>x</i> +1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> -1, <i>y</i> , <i>z</i> .				

Fig. 1

